ZK Documentation MCP Server

An MCP (Model Context Protocol) server for the ZK Framework documentation that provides semantic search, intelligent Q&A, and documentation indexing capabilities.

Overview

This server integrates Chroma for vector-based semantic search and implements MCP tools for searching ZK documentation.

You can use this MCP server with any AI tool that supports MCP servers to:

  • Retrieving specific documentation content
  • Answering questions based on ZK documentation
  • Managing documentation indices
  • Submit your feedback aboutZK documentation

Quick Start

Prerequisites

Your environment should have the following installed:

  • Python 3.10 or higher.
  • uv package manager (https://docs.astral.sh/uv/) - optional but recommended
  • Git (2.7 or higher) - Required for cloning ZK documentation from the Github repository

Installation zk doc MCP server from PyPI

create a virtual environment of Python 3.10

uv venv --python 3.10
# Using uv (recommended)
uv pip install zk-doc-mcp-server
# This command installs the package into the currently active virtual environment.

List installed package to check

uv pip list

Upgrade it if you installed an older version

uv pip install --upgrade zk-doc-mcp-server

The package is available at PyPI

Initialize Documentation (Optional Setup)

After installation, you can optionally pre-index the ZK documentation for faster server startup:

uvx zk-doc-mcp-server init

This command:

  1. Clones/syncs the documentation repository to ZK_MCP_SRC_DIR
  2. Pre-indexes the documentation for semantic search

After running init, subsequent server startups can be immediately ready for doc search. Otherwise, you might need to wait for several minutes for background indexing.

Check status or re-index after documentation updates:

# Re-sync and re-index if documentation has changed
uvx zk-doc-mcp-server init

# Force complete re-clone and re-index
uvx zk-doc-mcp-server init --force

The server uses incremental indexing that automatically detects documentation changes and only re-indexes modified files, making updates fast and efficient.

When to use init:

  • First-time setup
  • After significant documentation updates
  • When you want immediate search availability without waiting for background indexing

Setup for AI Tool

Most AI tools support using an MCP server, please check their document to know how to configure it. Here we just give some examples.

Using with Claude Code

claude mcp add zk-doc -- uvx zk-doc-mcp-server

Using with Gemini CLI

Add the MCP server to your Gemini configuration file (typically ~/.gemini/config.json or similar):

{
  "mcpServers": {
    "zk-doc": {
      "command": "uvx",
      "args": ["zk-doc-mcp-server"]
    }
  }
}

Start using it

Ask your AI tool to search zk doc like:

Search the ZK doc for "what is desktop"

MCP Tools

search_zk_docs

Search ZK documentation for relevant content using semantic search.

Parameters:

  • query (string, required): Search query
  • limit (integer, optional, default: 5): Maximum results to return (1-20)

Response:

{
  "results": [],
  "query": "your search query",
  "limit": 5,
  "message": "Search functionality coming soon"
}

submit_feedback

Submit feedback about search results to improve documentation.

When search results don’t meet user expectations, this tool captures feedback that helps the documentation team understand gaps and improve content.

Parameters:

  • query (string, required): The search query that produced unsatisfactory results
  • results (list, required): List of search results returned (each with title, file_path, content)
  • expected (string, required): What the user expected to find
  • comments (string, optional): Additional context about why results don’t match

Features:

  • Feedback is always saved locally to ~/.zk-doc-mcp/feedback/
  • Automatically submitted as GitHub issue to https://github.com/zkoss/zkdoc/issues
  • Non-blocking operation - returns immediately while GitHub submission happens in background
  • Graceful fallback - feedback is preserved locally if network fails

Response:

{
  "success": true,
  "feedback_id": "feedback_20250114_a7k9m2x8",
  "local_path": "/home/user/.zk-doc-mcp/feedback/feedback_20250114_a7k9m2x8.json",
  "github_issue_url": "https://github.com/zkoss/zkdoc/issues/456",
  "message": "Feedback saved and submitted to https://github.com/zkoss/zkdoc/issues/456"
}

show_settings

Display all configuration settings for the ZK Doc MCP Server.

This tool enables you to inspect the current server configuration, including all environment variables and their effective values. It’s useful for debugging, configuration verification, and discovering available settings.

Parameters: None - this tool takes no parameters.

Response:

{
  "settings": {
    "ZK_MCP_SRC_DIR": "~/.zk-doc-mcp/repo",
    "ZK_MCP_VECTOR_DB_DIR": "~/.zk-doc-mcp/chroma_db",
    "ZK_MCP_FORCE_REINDEX": false,
    "ZK_MCP_LOG_LEVEL": "INFO",
    "ZK_MCP_USE_GIT": true,
    "ZK_MCP_CLONE_METHOD": "https",
    "ZK_MCP_REPO_URL": "https://github.com/zkoss/zkdoc.git",
    "ZK_MCP_GIT_BRANCH": "master",
    "ZK_MCP_FEEDBACK_ENABLED": true,
    "ZK_MCP_FEEDBACK_RETENTION_DAYS": 90,
    "ZK_MCP_FEEDBACK_GITHUB_REPO": "zkoss/zkdoc"
  },
  "summary": {
    "total_settings": 11,
    "git_enabled": true,
    "feedback_enabled": true
  }
}

Usage in Claude Code:

Show me the current ZK doc MCP server settings

Usage in Gemini CLI:

Use the show_settings tool from zk-doc server

Common use cases:

  • Verify that Git synchronization is enabled/disabled
  • Check which documentation branch is being used
  • Confirm the vector database location
  • Debug configuration issues
  • Discover available configuration options

Configuration

The MCP server behavior can be customized using environment variables. These settings control documentation sources, indexing, and Git integration.

Available Settings

The server provides the following configurable settings:

Setting Default Description
ZK_MCP_SRC_DIR ~/.zk-doc-mcp/repo Documentation source directory (Git repo or local docs)
ZK_MCP_VECTOR_DB_DIR ~/.zk-doc-mcp/chroma_db Vector database directory for storing embeddings and search indices
ZK_MCP_FORCE_REINDEX false Force re-indexing of documentation on startup
ZK_MCP_LOG_LEVEL INFO Logging level (DEBUG, INFO, WARNING, ERROR, CRITICAL)
ZK_MCP_USE_GIT true Enable Git synchronization for documentation
ZK_MCP_CLONE_METHOD https Git clone method (https or ssh)
ZK_MCP_REPO_URL https://github.com/zkoss/zkdoc.git Repository URL to clone documentation from
ZK_MCP_GIT_BRANCH master Git branch to pull documentation from
ZK_MCP_FEEDBACK_ENABLED true Enable feedback collection for search improvements
ZK_MCP_FEEDBACK_RETENTION_DAYS 90 Days to retain local feedback files
ZK_MCP_FEEDBACK_GITHUB_REPO zkoss/zkdoc GitHub repository for feedback issues (built-in)

Example Usages

Example: Using SSH for Git Clone

To clone the documentation repository using SSH instead of HTTPS:

export ZK_MCP_CLONE_METHOD=ssh
export ZK_MCP_USE_GIT=true
uv run python3 -m ZK_MCP_mcp

Prerequisites for SSH:

  • SSH key configured and added to ssh-agent
  • SSH key authorized on GitHub (or your Git hosting service)

Example: Using a Custom Documentation Directory

To use a local documentation directory instead of cloning from Git:

# Disable Git sync and point to local directory
export ZK_MCP_USE_GIT=false
export ZK_MCP_SRC_DIR=/path/to/local/docs
uv run python3 -m ZK_MCP_mcp

Example: Force Re-indexing Documentation

To rebuild the vector search index from scratch:

export ZK_MCP_FORCE_REINDEX=true
uv run python3 -m ZK_MCP_mcp

After re-indexing completes, the server will run normally with the updated index.

Configuration Verification

Use the show_settings tool to verify your configuration is what you expect.

License

MIT License

AI Usage Clarification

ZK framework does not include any built-in AI features, nor does it send your data to any AI service. Our MCP server simply provides structured access to ZK documentation, so that your own AI model chosen and hosted by you can retrieve relevant information. Using the MCP server does not constitute the use of AI within ZK itself, and ZK does not process, store, or transmit any prompts or model outputs.